Clifford M. Csizmar

Clifford Csizmar


Entering Class:


Boise State University
Chemistry and Pre-Medical majors
B.S.(2), 2011

University of Minnesota
Medicinal Chemistry Graduate Program
Ph.D., 2018

MSTP Student Governance:

  • Student Admissions Committee, 2014-2016
  • Student Advisory Committee, 2012-14

Honors and Awards:

  • Ruth L. Kirschstein National Research Service Award for Predoctoral MD/PhD Fellows, National Cancer Institute, 2016-2020
  • University of Minnesota Warren and Henrietta Warwick Fellowship, 2015-16

Thesis Advisor: Carston Wagner, Ph.D.

Thesis Research:

The ability to engineer and reprogram cell surfaces has the potential to enable and expand the use of cell-based therapies for cancer and tissue regeneration. Due to the numerous technical and clinical drawbacks of methods relying upon genetic engineering (e.g., chimeric antigen receptors [CARs]), our group has sought an alternative, non-genetic strategy to engineer cell surfaces and direct therapeutic cell-cell interactions. We have previously demonstrated that a fusion protein comprised of two units of E. coli dihydrofolate reductase (DHFR2) and an anti-EpCAM single-chain antibody (scFv) can be engineered to spontaneously form chemically self-assembled nanorings (CSANs) when combined with the chemical dimerizer bis-methotexate (bisMTX). When a phospholipid is conjugated to the bisMTX moiety, assembly of these species forms chemically self-assembled chimeric antigen receptors (CS-CARs) capable of targeting the carcinoma and cancer stem cell marker EpCAM. Furthermore, we demonstrated that the anti-EpCAM CS-CARs rapidly and stably insert into T cell membranes and drive the selective recognition and killing of EpCAM-positive breast cancer cells in vitro. A unique feature of our approach is the ability to deactivate the CS-CARs pharmacologically via incubation with the FDA-approved antibiotic trimethoprim. Despite these encouraging results, it is unclear whether the current CS-CAR constructs are optimal for the initiation and maintenance of therapeutic cell-cell interactions. Therefore, I am investigating the impact of the lipid-bisMTX conjugation chemistry, fatty acid composition, fusion protein linker lengths, and targeting scaffold identity (scFv vs Fn3) on the membrane insertion and target cell recognition capabilities of the CS-CARs. In collaboration with the laboratory of Dr. Ben Hackel, I am using yeast surface display and directed evolution to engineer a high-affinity anti-EpCAM fibronectin (Fn3) scaffold that can replace the scFv and enable soluble expression of our CS-CAR fusion proteins. Overall, our results are poised to enhance the field's understanding of engineering reversible cell-cell interactions and expand the use of clinical cell-based therapies.


Csizmar CM, Petersburg JR, Wagner CR. Programming Cell-Cell Interactions through Non-genetic Membrane Engineering. Cell Chem Biol. 2018 Aug 16;25(8):931-940.

Petersburg JR, Shen J, Csizmar CM, Murphy KA, Spanier J, Gabrielse K, Griffith TS, Fife B, Wagner CR. Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells. ACS Nano. 2018 Jul 24;12(7):6563-6576.

West HT, Csizmar CM, Wagner CR. Tunable Supramolecular Assemblies from Amphiphilic Nucleoside Phosphoramidate Nanofibers by Enzyme Activation. Biomacromolecules. 2018 Jul 9;19(7):2650-2656


Csizmar CM, Petersburg JR, Hendricks A, Stern LA, Hackel BJ, Wagner CR. Engineering Reversible Cell-Cell Interactions with Lipid Anchored Prosthetic Receptors. Bioconjug Chem. 2018 Apr 18;29(4):1291-1301.

Stern LA, Csizmar CM, Woldring DR, Wagner CR, Hackel BJ. Titratable Avidity Reduction Enhances Affinity Discrimination in Mammalian Cellular Selections of Yeast-Displayed Ligands. ACS Comb Sci. 2017 May 8;19(5):315-323. PMCID: PMC5521271

Csizmar CM, Kim DH, Sachs Z. The role of the proteasome in AML. Blood Cancer J. 2016 Dec 2;6(12):e503. doi: 10.1038/bcj.2016.112. Review. PMCID: PMC522314

For work prior to the UMN MSTP

Csizmar CM, Daniels JP, Davis LE, Hoovis TP, Hammond KA, McDougal OM, Warner DL. Modeling SN2 and E2 reaction pathways and other computational exercises in the undergraduate organic chemistry laboratory. J Chem Educ. 2013 Sept;90(9):1235-1238.

Csizmar CM, Force DA, Warner DL. Examination of bond properties through infrared spectroscopy and molecular modeling in the general chemistry laboratory. J Chem Educ. 2012 Feb;89(3):379-382.

Csizmar CM, Force DA, Warner DL. Implementation of gas chromatography and microscale distillation into the general chemistry laboratory curriculum as vehicles for examining intermolecular forces. J Chem Educ. 2011 July; 88 (7):966-969.