UMN Researchers 3D Bio-Print a Model That Could Lead to Improved Anticancer Drugs and Treatments

February 11, 2019
Published by
Published by: 
Krystle Barbour, Media and Public Relations Specialist

MINNEAPOLIS, MN- February 11, 2019 – University of Minnesota researchers have developed a way to study cancer cells which could lead to new and improved treatment. They have developed a new way to study these cells in a 3D in vitro model (i.e. in a culture dish rather than in a human or animal).

In a paper recently published in Advanced Materials, Angela Panoskaltsis-Mortari, PhD, Vice Chair for Research and Professor in the Department of Pediatrics at the University of Minnesota Medical School, Director of the 3D Bioprinting Facility and Member of the Masonic Cancer Center, and her fellow researchers found that cells behave differently in this 3D soft tissue environment than on 2D plastic or glass surfaces, for example.

“This model is more consistent with what the body is like,” said Panoskaltsis-Mortari, “and, therefore, studying the effects of drugs with human cells at this level makes the results more meaningful and predictive of what will happen in the body.”

The 3D vascularized tumor tissues provide a platform to identify potential therapies and screen anticancer drugs. Importantly, this new model also provides a means to study metastatic cells—cancer cells that have entered a blood vessel and traveled to another site.

“One of the reasons this model is successful is that we are better able to control the environment,” said Fanben Meng, Post-Doctoral Associate in the College of Science and Engineering at the University of Minnesota. “We are able to slowly cause the release of the chemical mediators and create a chemical gradient. It gives the cells time to behave in a way that’s similar to what we think happens in the body.”

“All of this is enabled by our custom-built 3D printing technology, which allows us to precisely place clusters of cells and chemical depots in a 3D environment,” said Michael C. McAlpine, Ph.D., Benjamin Mayhugh Associate Professor of Mechanical Engineering in the College of Science and Engineering at the University of Minnesota and co-corresponding author on the paper.

Initially, the researchers have focused on lung cancer and melanoma. The next step is to incorporate more cell types, especially immune system cells, as well as cell therapies, and study those interactions.

“Testing anti-cancer drugs and cell therapies are both concepts that the University of Minnesota is world renowned for, and, with this model, we continue to be on the forefront of those innovations,” said Masonic Cancer Center member Daniel Vallera, Ph.D., Professor of Therapeutic Radiology-Radiation Oncology in the Department of Radiation Oncology at the University of Minnesota Medical School. “Something like this can yield some very important answers between the relationship of vasculature and drugs because this is modular; you can add elements to it and make it more sophisticated. You can even use the patients’ own tumor cells in this model.”

This work was made possible through an R21 grant awarded by the NIBIB (#1R21EB022830 “3D Bioprinting for Esophageal Reconstruction”), the NIH’s New Innovator Award (#1DP2EB020537 “3D Printed Nano-Bionic Organs”), a seed grant from the UMN Institute for Engineering in Medicine, the UMN Prostate & Urologic Cancer Translational Working Group pilot project award, the UMN 3D Bioprinting Facility, and a collaboration between the College of Science and Engineering and the Medical School at the University of Minnesota.

About the University of Minnesota Medical School
The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

About the Masonic Cancer Center
The Masonic Cancer Center, University of Minnesota is the Twin Cities’ own Comprehensive Cancer Center, designated ‘Outstanding’ by the National Cancer Institute. For more than 25 years, researchers, educators, and care providers have worked to discover the causes, prevention, detection and treatment of cancer and cancer-related diseases. Learn more at cancer.umn.edu.

Contact: Krystle Barbour
kbarbour@umn.edu
612-626-2767

Share this post

You may also like:

Perlingeiro’s lab, over several years, pioneered the development of muscle stem/progenitor cells from pluripotent stem cells in vitro.

Currently, team members are pursuing projects that will have wide-ranging impacts throughout the state.

According to Dr. Howell, you're safe consuming up to 400 milligrams a day, the equivalent to 10 cans of pop or two 16-ounce cups of coffee.